Pao-kuan Wang, NCKU Professor, Wins Top Award from European Severe Storm Lab-國立成功大學永續發展SDGs

Pao-kuan Wang, NCKU Professor, Wins Top Award from European Severe Storm Lab

SDG13

Pao-kuan Wang, NCKU Professor, Wins Top Award from European Severe Storm Lab

Synergy Correlation

  •  
Pao-Kuan Wang, a Visiting Distinguished Chair Professor of the Department of Aeronautics and Astronautics at NCKU, and an Academician of the Research Center for Environmental Changes at Academia Sinica, was recently awarded the Nikolai Dotzek Award, the highest honorary award of the European Severe Storms Laboratory (ESSL). This marks the first time that a member of Taiwan's meteorological community has received an award from a European multinational meteorological research organization, and Prof. Wang is the first Asian recipient of this award, which reflects the increasing status and influence of Asia in this field.

Established in 2006, the European Severe Storms Laboratory (ESSL) is a non-profit international organization that promotes and coordinates research and response to severe weather disasters among countries, facilitates academic exchange and experimental research, and provides information to the public. The Nikolai Dotzek Award was established in 2011 to commemorate Nikolai Dotzek, the founder of ESSL. In addition to honoring Dotzek, the ESSL also recognizes researchers who have made significant contributions to the fields of severe weather, storms, and lightning.

Professor Wang has dedicated himself to atmospheric science and thunderstorm physics, and has published many papers. Among them, his Gravity Wave Breaking Theory has made significant contributions to weather forecasting and climate modeling. Experts in the field of weather hazards and thunderstorms nominated Prof. Wang for this international award, and the jury recognized him as one of the three winners of the 2023 Award for research in atmospheric science using artificial satellites.

The Earth is surrounded by a large atmosphere, which is divided into different altitudes, including the troposphere, stratosphere, mesosphere, and thermosphere. The stratosphere usually suppresses the upward transport of material from the troposphere because of stable air currents. However, Prof. Wang discovered that the strong updrafts of thunderstorm clouds induce gravity waves at the top of the clouds, which, under appropriate conditions, penetrate the top of the troposphere and generate wave breaking, transporting water vapor and ice crystals to the stratosphere. This breaking phenomenon has important implications for the development of weather and climate systems.

Prof. Wang has also developed a cloud model to study thunderstorms. This model can calculate the possible time of thunderstorm generation, see the detailed structure (including ice, snowflakes, hail, etc.), vertical airflow distribution, and predict the rising speed of thunderstorms. The model successfully simulates many storm features, such as cold cirrus, cold-U, or anvil cirrus plumes, which are observed by our satellite in the interaction between overshooting tops and the ambient wind field, with high computer resolution.

Clouds are currently considered to be one of the greatest uncertainties in predicting future climate change studies because their impact on atmospheric radiation balance is significant but not easily predicted. Prof. Wang's research expertise can help reduce the critical factor of clouds, and he is a pioneer in deep convection system research. Professor Wang believes that Taiwan has the advantage of natural geography and can observe many weather phenomena. However, there is still much room for academic theoretical research and exploration. He encourages students who are interested in science to be curious and imaginative about things and to keep doing research and verification. Even if the research fails, it is not the end of the world, and in the end, one can enjoy doing research as joy.

Detailed award information:
https://www.essl.org/cms/nikolai-dotzek-award-2023-to-pao-wang-martin-setvak-and-kris-bedka/?fbclid=IwAR0aXt2kmA_1puA1I_V51kPE0r09Eupn0Cj3npSrZQoBLUdMr75XCdELq%20%C2%A0

Prof. Po-Kwan Wang developed a cloud model to study thunderstorms.

The cold-U and cold circles simulated by the cloud model are the same as those observed in artificial satellites. Credit: Prof. Po-Kwan Wang

The cold-U and anvil upper cirrus clouds simulated by cloud mode can be seen in detail. Credit: Prof. Pao-Kuan Wang

Pao-Kuan Wang, Visiting Distinguished Chair Professor of Dept. Aeronautics and Astronautics, NCKU, and Academician of the Research Center for Environmental Changes, Academia Sinica, was recently awarded the Nikolai Dotzek Award, the highest honorary award of the European Severe Storms Laboratory (ESSL).

Nurturing Net-Zero Talents to Build Taiwan's Green Economy, NCKU and TÜV Rheinland Sign Memorandum of Understanding

SDG13Nurturing Net-Zero Talents to Build Taiwan's Green Economy, NCKU and TÜV Rheinland Sign Memorandum of Understanding

View more
Praise Academics and Protect the Environment 2021 Green Technology Forum and Paper Award Ceremony at NCKU

SDG13Praise Academics and Protect the Environment 2021 Green Technology Forum and Paper Award Ceremony at NCKU

View more
The Application of Technological and Agricultural Industry-Academy Cooperation of Yen-Hsun Su's team of MSE, NCKU, is  Superb

SDG13The Application of Technological and Agricultural Industry-Academy Cooperation of Yen-Hsun Su's team of MSE, NCKU, is Superb

View more

NCKU SDGs

永續發展目標

No.1, University Road, Tainan City 701, Taiwan (R.O.C)

2022© Copyright All Rights Reserved

國立成功大學SDGs離岸團隊擁有全球風能維護團隊5年的全球風控中心,並擁有5年的第一套商業套化輪播式光達設備;除建立捲簾式的移動監控技術,與ECN展示現歐洲海事外展能力。建築複合功能設計團隊與建築外置經驗塔在介紹節能建築的同時,驗證建站技術也在技術中心及平台上進行技術測試,分享階段平台成果試驗成果未來生結合應用的架構,以作為開發系統的架構。