Revolutionizing Material Design : Leveraging “Prediction + Design" AI Model in Freeze-Casting for Bioinspired Porous Materials

Revolutionizing Material Design : Leveraging “Prediction + Design" AI Model in Freeze-Casting for Bioinspired Porous Materials.

SDG9

Revolutionizing Material Design : Leveraging “Prediction + Design" AI Model in Freeze-Casting for Bioinspired Porous Materials.

Synergy Correlation

  •  
Written by News Center . Image credit to  Chi-Hua Yu.

While freeze-casting for bioinspired porous materials holds immense real-world application potential, the current design-to-fabrication process is still complex and fraught with uncertainties. Assistant Professor Chi-Hua Yu (Scopus) of the Department of Engineering Science at National Cheng Kung University has led a research team that successfully used deep learning models to predict the generative process and design the ice crystal structure in freeze-casting. Published in Advance Science in May, this research not only minimizes the labor and time costs involved in the design and fabrication process, but also enhances the success rate to pave the way for innovative material design. 《Advanced Science: Deep Learning Model to Predict Ice Crystal Growth

“Freeze-casting is a burgeoning technique for fabricating bioinspired porous materials,” stated Yu. “The formation of the ice crystal structure is crucial to these porous materials' structure. Freeze-casting has been in use to create biomaterials such as biomedical bone and environmental application materials, including oil and water filtration and air filtration. However, designing the conditions for ice crystal growth has been labor and time consuming, with numerous variables which would significantly increase design complexity.”

YU: the use of deep learning and reinforcement learning 

Current researches on artificial intelligence for freeze-casting have focused on predicting of the dendrite evolution to anticipate the outcome of ice crystal structure formation with conditions of different temperatures and speeds. Comparatively, Yu’s team not only employs deep learning to predict the evolution structure, but also applies reinforcement learning to impart the model with the ability to design by inputting specific target properties of the ice crystal. This new model can then devise various simulation conditions to meet the "target".

The newly developed AI model is 300,000 times faster 

The "prediction + design" artificial intelligence model was independently developed by Yu and his team. ”The model drastically speeds up the ice crystal structure design process,” noted Yu. “Generally, it takes at least 5 hours for experienced designers to plan an ice crystal structure growth trend. Conversely, the artificial intelligence model can complete such tasks in just 2 to 3 minutes. As for computation costs, traditional simulation methods can take up to 2 minutes for a single simulation trial, while artificial intelligence takes only 2 seconds per inference, which is 300,000 times faster.”

Team perseverance to deal with challenges and complete the research

The research team led by Assistant Professor Chi-Hua Yu comprises Ph.D. candidate Bor-Yann Tseng, research assistant Chen-Wei Guo, and master's graduate Yu-Chen Chien. It took the team one year to complete this research, overcoming many challenges. A significant challenge was the absence of an existing AI model framework to resolve the problem. The team had to develop a new framework and designed algorithms to fulfill the research requirements. Another challenge was to effectively integrate and adjust related parameters to control the structure. Through the team's perseverance, these problems were successively resolved.

Yu: Continuous research on AI application in material science

 “I will continue to lead this team to explore the application of artificial intelligence in material science and pursue advancements in this field,” stated Yu. “Currently, the porous structures of bioinspired porous materials all grow in the same direction. It would be valuable to investigate different directions of pore structure generation and consider the additive materials in the solution.”
“Advance Science” is a highly influential journal that covers research in materials science, physics, chemistry, medical and life sciences, and engineering.

An Artificial Intelligence-based deep learning model to predict the ice crystal formation.

(Top to bottom) The AI-based deep learning model presents prediction of ice crystal formation, ground truth for actual growth, and the overlapping of prediction and actual growth.

From left to right: Bor-Yann Tseng, Chen-Wei Guo and Chi-Hua Yu.

Significant in High-Energy Nuclear Physics: Validating Quark Deconfinement Phenomenon by Recreating Early Universe Conditions

SDG9Significant in High-Energy Nuclear Physics: Validating Quark Deconfinement Phenomenon by Recreating Early Universe Conditions

View more
Director Fan-Tien Cheng of NCKU's Book Launch: "Industry 4.1:  Intelligent Manufacturing with Zero Defects"

SDG9Director Fan-Tien Cheng of NCKU's Book Launch: "Industry 4.1: Intelligent Manufacturing with Zero Defects"

View more
Professor Wang-Long Li's Paper Wins the 2023 "Tien-Yow Jeme Paper Award," Creating New Opportunities for Motor Core Manufacturer

SDG9Professor Wang-Long Li's Paper Wins the 2023 "Tien-Yow Jeme Paper Award," Creating New Opportunities for Motor Core Manufacturer

View more

NCKU SDGs

永續發展目標

No.1, University Road, Tainan City 701, Taiwan (R.O.C)

2022© Copyright All Rights Reserved

國立成功大學SDGs離岸團隊擁有全球風能維護團隊5年的全球風控中心,並擁有5年的第一套商業套化輪播式光達設備;除建立捲簾式的移動監控技術,與ECN展示現歐洲海事外展能力。建築複合功能設計團隊與建築外置經驗塔在介紹節能建築的同時,驗證建站技術也在技術中心及平台上進行技術測試,分享階段平台成果試驗成果未來生結合應用的架構,以作為開發系統的架構。